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Abstract This paper presents a boundary element method (BEM) based on a subdomain
approach for the solution of non-Newtonian fluid flow problems which include thermal effects and
viscous dissipation. The volume integral arising from non-linear terms is converted into equivalent
boundary integrals by the multi-domain dual reciprocity method (MD-DRM) in each subdomain.
Augmented thin plate splines interpolation functions are used for the approximation of field
variables. The iterative numerical formulation is achieved by viewing the material as divided into
small elements and on each of them the integral representation formulae for the velocity and
temperature are applied and discretised using linear boundary elements. The final system of
non-linear algebraic equations is solved by a modified Newton’s method. The numerical examples
wnclude non-Newtonian problems with viscous dissipation, temperature-dependent viscosity and
natural convection due to bouyancy forces.

1. Introduction

The main purpose of this work is to present the use of the multi-domain dual
reciprocity method (MD-DRM) (Florez and Power, 2001a; Popov and Power,
1999) for the numerical simulation of inelastic non-Newtonian flow with
viscous dissipation effects and with a viscosity dependent on both the rate of
deformation and temperature. The MD-DRM is a recently developed technique
that allows an efficient and accurate boundary element numerical solution of
highly non-linear and convective problems.

The authors would like to thank COLCIENCIAS (Colombian Science Foundation) for their
financial support under the grant 470-2000.



For liquids with high viscosity and low thermal conductivity such as most
polymers, viscous dissipation cannot be neglected because it has a strong
influence on the temperature field which in turn affects the thermophysical
properties of the fluid. This phenomenon is particularly relevant to the
polymers processing industry (in extrusion and injection processes the fluid is
forced to flow through channels where high power generation near the walls is
observed (Davis, 1995). Also in radiator design, where the working fluids are
usually highly viscous oils, dissipation in laminar flow regime is important.

The behavior of non-Newtonian fluids is strongly dependent on the viscosity
variations within the domain which are caused by the shear rate and
temperature. Most non-Newtonian fluids like polymers exhibit a viscosity that
is a decreasing function of the shear rate, this characteristic is known as shear
thinning (Agassant ef al., 1991). The viscosity of an inelastic non-Newtonian
fluid can be calculated on the one hand in terms of the shear rate through
several mathematical models such as the power law model; the Carreau model
and the hyperbolic tangent model (Agassant ef al., 1991; Bird et al., 1960). On
the other hand, the viscosity of polymer melts changes drastically with
temperature (a change of 1 percent in temperature can cause at least a 25
percent change in viscosity) and it can be calculated by either the Andrade law
(Agassant ef al., 1991), or the WLF equation (Agassant et al, 1991). Since the
viscosity of non-Newtonian fluids is dependent on shear rate and temperature,
it follows that the mathematical models governing the flow motion are
non-linear even in the case when inertia effects can be neglected, i.e. at low
Reynolds number. This type of flow process requires sophisticated numerical
solution techniques.

There is another subset of fluid flow problems called natural convection,
where the flow pattern is due to buoyancy forces caused by temperature
differences. To our knowledge, the fully developed laminar convection problem
including both viscous dissipation and buoyancy effects has not already been
solved by using the boundary element method (BEM). In this work, we will
present how the MD-DRM technique can be used to solve this type of problems,
showing the efficiency and versatility of the proposed numerical approach. The
obtained numerical solution to the above mentioned case will be compared with
the solution obtained by a perturbation method presented by Barletta (1998) for
one-dimensional flow between parallel plates.

The application of the BEM to non-Newtonian and non-linear problems
requires finding a fundamental solution of the system of governing equations.
However, since such fundamental solution for a general model is not possible to
be known, it is necessary to put the non-linear terms into a pseudo-body force
leading to domain integrals that can be evaluated by using the cell integration
approach (Cell-BEM) (Brebbia et al., 1984). Although this method is effective
and general, it makes the BEM lose its boundary only nature resulting in a
numerical scheme of several orders of magnitude and more time consuming
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than other domain techniques such as the finite differences (FDM) and finite
element methods (FEM). The computational cost of the cell integration
approach mainly depends on the fact that the solution at each surface or
internal point must involve the evaluation of the complete surface integrals
yielding in this way to a fully populated matrix system.

A handful of methods have been developed to take the domain integrals to
the boundary. Among them, the dual reciprocity method (DRM) (Partridge et al.,
1992) and the particular solution method (PIT) (Nardini and Brebbia, 1982) are
the most popular ones. These two approaches have been particularly attractive
in recent years because of the advances in multidimensional interpolation with
radial basis functions (RBF) used in these techniques. Both the DRM and PIT
approximate the non-linear and non-homogeneous terms of a partial
differential equation as a series of vector valued interpolation functions,
which are defined in terms of a set of surface and internal nodes. These
interpolation functions lead to a particular solution for the problem which can
be used together with Green’s identities to convert the domain integrals into
boundary integrals. As in the cell integration approach, in these two boundary
approaches only the evaluation of the functions at each node requires the
integration of the complete surface integrals yielding again a fully populated
matrix system.

A major problem encountered with the DRM and PIT is that the resulting
algebraic system consists of a series of matrix multiplications of dense
matrices. Although the computing time required by the DRM and PIT, when
few or no internal points are used, is lower than with the cell integration
scheme, it is still very high compared to domain approaches. Besides, when
Internal points are required their corresponding computational cost becomes
similar or higher than those required by the cell integration approach. On the
other hand, in complex problems both the DRM and PIT have been limited to a
small degree of non-linearity. From these limitations, it appears that this type
of boundary formulations only in their original single domain form cannot be
extended to solve highly non-linear problems.

When dealing with the BEM solution of large problems it is usual to use the
method of domain decomposition, in which the original domain is divided into
sub-regions, and in each of them the full integral representation formula is
applied. At the interfaces between the adjacent sub-regions, the corresponding
continuity conditions are enforced. While the matrices which arise in the single
domain DRM are fully populated, the sub-region formulation leads to block
banded matrix systems with one block for each sub-region and overlaps
between blocks when sub-regions have a common interface.

The implementation of the subregion BEM formulation in the limiting case
of a very large number of subregions, including cell integration at each
subregion was called by Taigbenu and collaborators as the Green element
method (GEM) (Taigbenu, 1995). In this method, the resultant coefficient



matrix is as sparse as that of the FEM and hence its solution is as efficient as in
that domain approach.

Recently, Popov and Power (1999) found that the DRM approximation of the
internal potential of a non-linear convection diffusion problem can be
substantially improved by using a domain decomposition scheme. Popov and
Power’s idea of using domain decomposition to improve the accuracy of the
DRM approach was inspired by the work of Kansa and Carlson (1995) on data
approximation with RBFs. Kansa and Carlson observed that the best
approximation is obtained when the original domain is split into matching
subdomains. In similar way, Popov and Power (1999) noticed that the DRM
approximation for the non-linear problems can also be improved when the
original domain is divided into smaller subdomains. At each subregion the
BEM formulation of the problem is separately applied. The corresponding
domain integral resulting from the BEM formulation is transformed to surface
integrals along the contour of the subregions by the DRM approach. The
desired accuracy of the scheme is achieved by refining the size of the
subdomains. For large number of subdomains this technique was called
MD-DRM, and the discrete form of the integral equation formulation of the
problem is given by a banded matrix system. Recently the MD-DRM has been
successfully applied by Florez and Power (2001b) to the solution of isothermal
non-Newtonian flow problems and to the Navier Stokes equations for
incompressible Newtonian fluids at moderately high Reynolds numbers (Florez
et al., 2000). In the present work, it will be shown how the MD-DRM can be
extended to more general non-isothermal non-Newtonian problems including
viscous dissipation terms.

The problem of multiplication of several large fully populated matrices
encountered in the DRM formulation in a single domain is reduced, in the
present domain decomposition case, to the multiplication of very small
matrices at each subdomain. Besides, if the subdomains are of similar shape all
the evaluations and multiplications can be performed only in one subdomain,
and the results for the others can be found by scaling due to the geometric
characteristic of the DRM functions. Because of the nature of the integral
equation formulation at each subdomain, the solution obtained with MD-DRM
is a kind of Hermitian solution. In the present case of non-isothermal and
non-Newtonian flow, the values of the velocity and shear stress fields as well as
the temperature and its directional derivatives at every point defining the
subdomains are found directly from the solution of the resulting matrix system.

Although the solution of a fully populated system of equations is
computationally very expensive, this type of solution for a sparse system can
be carried out very efficiently by not considering the multiplications of the zero
terms. In this manner, the solution of the MD-DRM system could be obtained in
a fraction of the solution of an equivalent fully populated system resulting from
any of the other standard BEM schemes. Besides, the required storage of the

Multi-domain
DRM

739




HFF
13,6

740

MD-DRM approach is substantially smaller than the one required by other
BEM schemes. For the sparse system obtained with the MD-DRM approach,
both the efficiency and the storage requirement, are functions of the bandwidth
of the matrix system. It is important to point out that the solution of any BEM
approach could also be substantially improved with the use of indirect solvers
which were not considered in this work.

Only a few works have been reported in the literature on the BEM numerical
solution of inelastic non-Newtonian flows. Phan Thien (1995) proposed a BEM
solution of the non-homogeneous momentum equations based on the particular
solution approach and RBF interpolation for the non-linear terms. Davis (1995)
used the pseudo-body force technique and cell integration to model polymers
and optimize mixing equipment. Davies also pointed out that the application of
the DRM to the whole domain does not produce accurate results especially
when there are high viscosity gradients.

The cell-integration BEM combined with subdomain techniques such as the
Green’s element method (GEM) (Taigbenu, 1995) have been applied together
with a velocity-vorticity formulation by Skerget and Samec (1999), to model
non-Newtonian flows in enclosures. As in other previous works by Skerget and
collaborators (Skerget and Hribersek, 1996) for the Navier-Stokes equations, the
integral formulation keeps the domain integrals without any further
simplification. Also, Skerget and collaborators never considered the case of
pressure boundary conditions which occurs very often in fluid dynamics
processes and that can be easily handled by using a direct formulation in terms
of velocity and tractions as the formulation presented here.

In the following sections, we will introduce the MD-DRM solution of the
coupled system of Stokes equations and the energy equation for the
non-Newtonian fluids with viscous dissipation effects. Besides the efficiency
and accuracy of the proposed numerical method, the MD-DRM has the
advantage of the robust RBF interpolation used in then DRM. Due to their
smoothness or noise minimization character, the radial functions guarantee
high accuracy on the evaluation of the gradient of the field variables
(Hickernell, 1999). This property of the DRM interpolation permits a precise
evaluation of the velocity and temperature derivatives directly from the
solution of the matrix system without any additional burden.

The results obtained in this work suggest that the present multi-domain
boundary element solution for non-isothermal and non-Newtonian problems is
very accurate even for cases with strong viscosity gradients.

2. Governing equations

The system of mass, momentum and energy conservation equations for the
steady state, non-isothermal flow of an incompressible fluid including
buoyancy and viscous dissipation is given in tensor notation by



i _ 0, x€Q @
0X;
~ P L e+ pg BT — Ty =0, x€Q 2)
ox; | ox; NEj PS; c) =Y,
axjaxj T = PLplly 696]‘ ’
with boundary conditions

up=up, x€Iy 4)
Li=oyn =1ty x€E I'; (5)
T=Ty, =x€lr (6)

oT
q=—k—=q, x€Iy (")

on

where

. 1 /0w, n ou;
&y 2 <axj axl»)
is the strain rate tensor; oy; the total stress tensor; #; is the velocity vector; Z; is
the traction vector; #; is the outward unit normal to the boundary
'=r,+I'=T7+T, of the volume ; T is the fluid temperature at any
point; p the pressure and ¢ is the heat flux. In the above equations the classical
summation convention has been used.

The thermophysical properties are: p the fluid density, 7 the viscosity which
is a function of temperature and the generalized strain rate, & is the thermal
conductivity, C, the thermal capacity and B is the coefficient of thermal
expansion. The buoyancy force pg;B8(T— T.) in equation (2) represents the
effect of temperature change on density, where T is the reference temperature
and g; is the magnitude of gravity acting in the ¢ direction. The term oy¢;; in
equation (3) is the irreversible rate of internal energy increase per unit volume
by viscous dissipation or in other words the degradation of mechanical to
thermal energy.

To convert this problem into a perturbation to a base Newtonian flow, the
total stress tensor is decomposed into a Newtonian and a non-linear component
as follows,
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o = —p8j + mnej + 7 @®)

where ny is an arbitrary constant viscosity that can be chosen to be the zero
shear rate viscosity; and Tl@ represents the non-Newtonian effects in the stress
tensor. For inelastic generalized Newtonian fluids the non-linear terms are:

(9 = ( — s ©)
where the non-Newtonian viscosity 7 is a function of the generalized shear rate
v given by

Y= 281']'8]‘1' (10)

With the formulation introduced in equation (8) the momentum equation (2) can
be re-written as

0

B(T — T, l
dxj01%; + pgiB( )+ ox;

ap 0%u;
——+
ar, T

=0 (11)

The viscosity of most non-Newtonian fluids like polymers is usually a
decreasing function of the generalized shear rate y and this is known as
shear-thinning behavior. For a Newtonian fluid the viscosity = is a constant
value pu,

n(y) = u = constant (12)

On the other hand, the most commonly used expression for the viscosity of a
non-Newtonian fluid is the Power-law or Ostwald-de-Waele model (Agassant
et al., 1991),

n(y) = Ky"! (13)

where K is called the consistency index and # € [0, 1], the power law index.
There are other more accurate semi-theoretical models to describe the
behavior of non-Newtonian fluids, some of them are:

« The Carreau model (Agassant et al., 1991)

77(7) = 7’00 + 1— 2
1+ oy
This model has four adjustable parameters to fit the experimental data:
A is a characteristic time, 7., 1S a constant viscosity at very high shear
rates, 79 and 7 are the same as in the power law model.



+ The hyperbolic tangent model (Agassant et al., 1991)

n(y) = A — Btanh (%) (15)

where the parameters A, B, k and »n are obtained by data fitting
techniques to experimental data.

The above models account for the effect of the shear rate upon viscosity,
however the actual viscosity is also dependent on temperature through the
Andrade law (Agassant et al, 1991; Osswald and Menges, 1995) of the form

7 1

n= e’ <T_TL°> (16)

where E' is the activation energy of the fluid; R the ideal gas constant and
7n(y) is the viscosity evaluated at the reference temperature, 7). Besides,
in the above system of equations the flow field and temperature field are
completely coupled, ie. two way coupling, making the problem even more
complex.

3. Multi-domain integral formulation

In the multi-domain BEM approach, the original domain is divided into smaller
subregions or subdomains, each of them enclosed by a certain number of
boundary elements. The solution of the partial differential equations (1)-(3) in
each subdomain is given in terms of the corresponding integral representation
formula. Also, adjacent domain-elements have to be matched according to some
continuity or compatibility conditions for all the variables namely velocity,
traction, temperature and heat flux.

From the integral representation of equation (11) given by Ladyzhenskaya
(1963), 1t 1s found that the ¢ component of the velocity field at a point x of the
nth subregion bounded by the contour I',, that encloses the sub-domain (), is
given by

Cptti(x) = /F K, yyui()dly — /F Ut e, (v) T

- /Q Ut (x, )g:(y) dQ, a7

for n=1,2, ..., M, where M is the total number of subregions.

In the above equations, ¢ (y) is the 7th component of the Newtonian based
tractlon due to the flow field (,p), i.e. tN( ¥) = (—p&; + nneijn;(y). The kernel
U (x,) 1s the 7th component of the Veloaty field of the fundamental solution of
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the Newtonian Stokes system of equations (Stokeslet), located at the point y and
oriented in the kth direction,

N 72

where 7 is the distance from point y to any other point x, i.e. 7=|x — y|, and

K = ol (@ (x,9), ", 9)n)

ks U (x,y) U\
—(Q (x,y)&]-l-nN( ox; + o3, ))n](y) (19)

_ L g =)0 — v — )
= - 3 n;
wr 7

is the traction corresponding to the flow field (#*(x,),q"*(x,y)). The
coefficients ¢; have values between §; and 0, being equal to (1/2)6; for
smooth boundaries, and equal to ¢;, = 8, for points inside the domain (),,.

Similarly, the integral representation of the energy transport equation at
each domain (equation (3)) can be obtained by applying Green’s second theorem
for a scalar function (Brebbia and Dominguez, 1992), and it is expressed as
follows

() = /F H) T dr, - /F Gex,a()dr, + /Q Gl h(3)dQ, (20)
where
oT
q(x)zka— (21)
n

and G, H are the fundamental solution and its normal derivative along the
Integration path, respectively, (Brebbia et al., 1984), 1.e.

1
G(x,y) = ﬁlogr (22)
and
1 ologr
H(x,y) o o, (23)

The domain integrals in expressions (17) and (20) account for all the non-linear
terms in the original partial differential equations (11) and (3), i.e.



()
T..
gi=—psiB(T—Te)— p Z (24)
Xj
oT
h= u; a—x] — O;&j (25)

The final set of equations is completed by assembling the integral equations
(17) for each subdomain, using the traction equilibrium and velocity
compatibility at the common interfaces between subregions, i.e. uﬁ“ = ul(-_)

and (rl(.f)nj + (rl(f)nj =0. Likewise, the integral equations (20) must also
be assembled using the continuity of the temperature field and the heat flux

balance condition, i.e. 7¢" = 747 and

a T(+)
0%

a7

n;, +
/ ax]'

n; = 0.

The cell integration approach and the DRM are two possible alternatives to
deal with the domain integral in equations (17) and (20) in each subregion.
When cell integration is used to evaluate the domain integral in each subregion
the GEM is recovered. On the other hand, if the domain integrals are converted
into equivalent boundary integrals in each subdomain the method will be
known as MD-DRM.

As explained in our earlier articles (Florez and Power, 2000; Florez et al.,
2000), dealing with different problems to the present one, the non-linear terms
that appear within the domain integrals in equation (17) and (20) can be
approximated using a series of particular solutions and interpolation functions.
To express the domain integral in equation (17) in terms of equivalent
boundary integrals, the DRM approximation is introduced. The basic idea is to
expand the g(x) term using radial interpolation functions at each sub-region, i.e.

N+L+A

g = Y f®a's (26)
m=1

The coefficients o} are unknowns to be determined by collocation on a set of N
nodes on the boundary and L internal nodes. It will be considered here that
there are A=3 augmentation global functions from the set {1, x7, x>}.

An augmented spline consists of a RBF plus a series of additional global
functions (Goldberg and Chen, 1997). The RBF used in this work is the
thin-plate spline:

') = frxe,y™) =r2logr m=1,...,N+L 27

where » = |x — y™| is the Euclidean distance between the field point, x and
the collocation point, y”. Although many different RBFs are discussed by
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Goldberg and Chen (1997), the thin plate spline has been successfully used
before in this type of formulation that make it the recommended choice (Mingo
and Power, 2000).

Equation (26) when applied to the N+L collocation nodes will generate 2
(N+L) linear equations with 2 (N+L+A) unknowns and therefore 24 additional
conditions are necessary which basically guarantee an optimum interpolant
(Goldberg and Chen, 1997). These additional relationships are:

N+L N+L N+L

Z agj o1 = Z x1 81! Z xz 811 (28)

where x7 represents the jth collocation node.
Similarly, in the energy equation (20) the convective term can be
approximated as:

N+L+A

hw =Y f"wp” (29)
m=1

Now, we define the auxiliary velocity field (lA]ZZm (x), p"™(x)) (Power and Wrobel,
1995) which is a solution of the following equations:

N/
0°U;" () ap™(x)
0X;0X; 0x;

=f"(x)8; (30)

~ Im

oU;
oX;

(€1

and also the auxiliary thermal field, 7, which satisfies the following Poisson
equation,

92 Tm (x)
0X;0X;

k

= f"(x) (32)

At this point, we can apply Green’s identities to both the auxiliary velocity field
and the auxiliary thermal field to obtain integral representation formulae only
in terms of boundary integrals (Florez and Power, 2000; Florez et al, 2000
Partridge et al., 1992; Power and Wrobel, 1995), thus



Cr ()t (x) — /F Ki(x,y)u(y)dly + /F Ui, )t (y)dTy

N+L+A

-y a}”{ckj(xﬂ?,i’”(x)— /F Ko )0 () dT, + /F U?(x,yﬁ’"(y)dry}
m=1 n n

(33)
cT(x) — /F H@,»)T(y)dl', + /r G(x,y)q(y)dl’,

N+L+A

= > B’”{cT’"(x)— /F H(x, )T () dly + /F G(x,y)a’”w)dry}
m=1 n n

(34)

where ¢ = aTm /on. The particular solution of equations (31), (30) and (32)
have been obtained by Florez and Power (2001a) and Mingo and Power (2000)
and are presented in the appendix.

4. Approximation of derivatives
The evaluation of the extra stress tensor, Tz(f), and other terms appearing in
equations (24) and (25), requires the numerical approximation of derivatives of
velocity and temperature. Once these derivatives are known, they can be used
to obtain the value of the non-Newtonian viscosity, the stress tensor and the
convective terms at each point of each subdomain.

If the nodal velocities and temperatures are approximated using augmented

thin plate splines, i.e.

N+P

w(x) =Y @B b (35)

m=1

N+L+A

T= > fray" (36)

m=1

or equivalently in matrix notation,

u=Fg 37)
T =Fy (38)

then the derivatives can be readily obtained by the differentiation of equations
(37) and (38),
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dui(x) N ) Ly o
. > o Ao (39)

m=1

o=y oy (40)

ax]' =1 ax]'
or in a more compact matrix notation,

ou oF

Py =—pB (41)
X 0x;

oT oF

— =Y (42)

0x;  0x;

Inverting equations (37) and (38) and substituting the results into (41) and (42)
we obtain the following expressions:

ou aFF_1

= 4
dax; 0% (43)
£ = EF_lT (44)
ox;  0x;

where the matrix aF/dx; contains the derivatives of the interpolation functions
with respect to xj, u is the vector of velocities at the collocation nodes and T is
the vector of temperatures at the nodes. The robustness of the above
approximation for the gradient is guaranteed by the smoothness property of
the RBF (Hickernell, 1999).

5. Discretization of the integral equations

For the numerical solution of the problem, the surface I',, of each subdomain
can be discretised by means of isoparametric linear boundary elements. Along
each element the integrals are calculated in terms of the nodal values of the
velocity and tractions and using linear interpolation functions. In this way,
Equations (33) and (34) can be written in matrix form as:

N+P
(cw); — Ky + Lt =~ oKy — Ll + (ctiy) (45)

m=1



N+P
(©T); = Hy T+ Gz = Y BiHz Thj — Giryj + (1)) (46)

m=1

where H;, G;, K, and L;;, are the standard influence matrices resulting
from the integrations over the boundary elements, the index ¢ represents de
collocation nodes, % the nodes at the integration elements and j the DRM
collocation points. In the present case, these matrices result from the
integration over the four elements that form each subdomain.

To find the value of the coefficients, ;" and B;, in equations (45) and (46),
equations (26) and (29) is applied at each of the N + L chosen collocation nodes
of each subdomain, boundary and internal, and imposes simultaneously the
orthogonality conditions to complete the terms of the polynomials. In this way,
the following systems of equations are obtained,

Fa=g 47
FB=h (48)
that can be inverted to get the values of the unknown coefficients, i.e.
a=Fg (49)
B=F'h (50)

Micchelli (1986) proved that for a case when the nodal points are all distinct,
the matrix resulting from any of the RBF interpolation given before is always
non- singular.

When the discrete integral equations for each domain-element equations (45)
and (46) are put together, the final systems of equations are written in matrix
notation as,

Ku - Lt = —(Ka — LHa (51)

Hu — Gq = —(Ha — GH)8 (52)

As explained in Sections 3 and 4 the unknown coefficients, e and B, are
determined by collocation on the boundary nodes of each subdomain (Florez
and Power, 2001b). According to the approximations explained in Section 4, the
vector a 1s expressed in terms of velocities and temperatures at the collocation
nodes, and vector 8 can be expressed in terms of nodal temperatures only.
Therefore, both equations (51) and (52) are non-linear systems and also are
coupled through several temperature terms. Each system of equations (51) and
(52) for the entire domain can be solved using the Newton-Raphson scheme

Multi-domain
DRM

749




HFF
13,6

750

combined with a line-search algorithm intended to reduce the error at each
iteration (Dennis and Schnabel, 1980).

To account for the coupling between the momentum and energy equations,
we used direct iteration. The velocity in the convective term from the energy
equation is considered as a known variable from the previous solution of the
momentum equations obtained by the Newton-Raphson method. Likewise, at
each iteration the temperature-dependent terms in the momentum equations
can be known from the previous solution of the energy equation.

For fluids with variable viscosity, there is an additional source of problems
in the numerical iteration. In the multi-domain solution of non-Newtonian
problems there will be sub-domains where the viscosity remains nearly
constant and other regions with higher gradients where the viscosity changes
ostensibly. These differences between sub-regions can make the residual
function of the iterative method have flat regions of local minima or valleys
where the iteration process stagnates. Additionally, the dual reciprocity
method for the non-Newtonian case is based in a perturbation formulation
given in equation (11), so when the assumed constant viscosity ny is very far
from its actual value 1, Newton’s method might not make good progress unless
the initial guess for the iterations is very close to the true solution. To alleviate
the problems mentioned above, a predictor-corrector approach was designed in
which a sequence of linear problems can be solved to get a better initial guess
for starting the non-linear iterations. In the predictor stage each sub-domain is
assumed to have a constant viscosity equal to the average viscosity of the
boundary nodes that define the subdomain. This average value is then
corrected in the corrector stage of the process when the original non-linear
system of equations is solved by Newton’s method until convergence is
reached. If Newton’s method stops at a local minimum, the predictor step can
be performed once again, but starting from that local minimum and so on.

6. Numerical examples
Three different non-isothermal problems with viscous dissipation were solved
using the MD-DRM approach. The results show the ability of the multidomain
method to model complex non-isothermal and non-Newtonian flows with
viscous dissipation effects.

6.1 Non-Newtonian slit flow with viscous dissipation

Let us consider the flow of a non-Newtonian fluid between two parallel plates
(planar poiseuille flow) with a constant wall temperature equal to 7Ty, the initial
temperature of the fluid, inlet temperature, 7, and zero temperature
longitudinal gradient at the outlet. The flow is assumed fully developed, at a
Reynolds number, Re< 1, and one-dimensional along the x-axis with negligible
variations of the viscosity with temperature, i.e. one way coupling. Buoyancy
effects due to temperature differences have also been neglected. The flow



between the plates is caused by a pressure drop Ap = p1—ps= 300Pa
between the ends of the channel. The length of the channel is L = 15m and the
width /2 = 1 m. Figure 1 shows the uniform mesh of 40 X 20 subdomains used
for the MD-DRM solution of the slit flow problem.

The governing equations for this problem including the viscous dissipation
term oy;e;;, are: the mass conservation equation, equation (1), the momentum
equation, equation (2) with 8= 0, and the energy equation, equation (3), with
the constitutive equations:

o = —p&i+mey; M=Ky (®3)
Figure 2 shows the obtained velocity profile for different values of the power
law index #, as well as a comparison of the obtained results with the known
analytical solution. As can be observed they are in good agreement, even that
in our solution we only used uniform distribution of subdomains. It is
important to observe that when using uniform distribution of subdomains, due
to the geometric similarity and the characteristic of the kernels used in our

Note: For the numerical solution of the slit flow problem
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Figure 1.
40 x 20 subdomains
mesh

Figure 2.

Velocity profile for the
slit flow problem with
viscous dissipation for
different values of the
power law index 7
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Figure 3.

Temperature profiles for
different values of the
power law index 7
including viscous
dissipation effects

integral equation formulation, the numerical evaluation of the matrices in each
subdomain need to be carried out only in one of the subdomains.

The temperature variation along the channel shows three distinguished
Zones.

(1) Near the entrance of the channel the temperature rise is small and the
heat conduction through the wall is negligible. Most of the power
dissipated is used to heat the fluid, as if the liquid was thermally
insulated from the surroundings. This is called the adiabatic regime.

(2) Somewhere downstream from the entrance the temperature rise is higher
and conduction can no be longer neglected. This zone is called the
transition regime in which both energy conduction and advection are
important.

(3) Further downstream, the temperature reaches a limiting value and all
the dissipated power is transferred by conduction to the surroundings.
This is the equilibrium regime.

Figure 3 shows the temperature profile in the equilibrium regime for a power
law fluid at different values of the power law index, #. In this figure, the
numerical results have been compared to the analytical solution given by
Agassant et al. (1991), and the error percentage is always less than 3.5 percent.

Figure 4, shows the comparison between our estimation of the viscosity
profile for different values of the power law index, # and those obtained with
the corresponding analytical solution showing as before excellent agreement.
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All the simulations presented here were run in a COMPAQ Pentium II desktop
with 400MHz, and not more than ten iterations were necessary before
convergence was attained. The convergence criteria used in this work was
defined as

”unew - uold” = 10—6 (54)
l|otnew |l

for the momentum equations and

”Tnew - Told” - —6
——— =10 55
17 vewll ©

for the temperature field.

6.2 Non-isothermal Couette flow with viscous dissipation

In this example, we consider the flow of an incompressible power-law fluid
between the two axial cylinders as shown in Figure 5. As the inner cylinder
rotates, each cell of fluid rubs against the adjacent cells. This rubbing of
adjacent layers of fluid produces heat; that is, mechanical energy is degraded
into thermal energy. The magnitude of the viscous dissipation effect depends
upon the local velocity gradient. The surfaces of the inner and outer cylinders
are maintained at the same temperature, 7= T\,. The geometry is defined by
the radius, ;= 1m and R, = 5m.
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Figure 4.

Viscosity profiles for the
slit flow problem with
viscous dissipation at
several values of the
power law index, 7
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Figure 5.

Schematic representation
of concentric cylinders
for the Couette flow

Figure 6.

20 x 20 subdomains
mesh used for MD-DRM
solution of the Couette
problem

For the MD-DRM numerical solution, a 400 subdomains mesh was used and it
is shown in Figure 6. The mathematical model for this example is defined by
the same governing equations than the previous example. However, here we
will consider three different possibilities depending on whether the viscosity is
dependent on temperature, on shear rate or on both. In all these cases the
problem consists of a two way coupling system of non-linear equations.

6.2.1 Case I Viscosity does not vary with temperature m = n(y). For a
power-law fluid with a viscosity that is only a function of the generalized shear
rate the rheological model is given by equation (13) in terms of the two
constants, K = 1Pas” (the consistency coefficient) and » (power law index),
le. in this problem the viscosity does not change with the temperature.
The numerical results for different values of the parameter # can be seen
in Figures 7-9.
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Figure 7 shows the result for the different velocity profiles, Figure 8 the
viscosity profiles and Figure 9 the temperature profiles. These results have
been compared with the analytical solution obtained according to Bird et al
(1960) by direct integration of the momentum and energy equations. In all the
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Figure 7.

Velocity profiles for the
Couette flow problem
with viscous dissipation

Figure 8.

Viscosity profiles for the
Couette flow problem
with viscous dissipation
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Figure 9.

Temperature profiles for
the Couette flow problem
with viscous dissipation
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cases, the numerical error was less than 0.5 percent, as shown in the figures. It
1s important to point out that the circular geometry was approximated by linear
elements. Better results are expected with the use of quadratic boundary
elements, which exactly represent the geometric.

6.2.2 Case II. Viscosity is a function of temperature only n= n(T). In this
case we have considered that viscosity is constant (Newtonian fluid) and the
temperature rise in the fluid results in variations of the viscosity which then
affect the velocity profile. The equations of motion and energy are coupled and
must be solved by an iterative method for each point of the flow system. The
expression for the viscosity in this case is the following (see equation (16))

1

n= noe%(%—ro) (56)

with o= 1Pas.

In Figures 10-12, we show the comparison between our numerical solution
for different values of the activity energy coefficient = and the solution
obtained with a complete different numerical scheme for the velocity,
temperature and viscosity profiles, respectively. As before the agreement
between the two solutions is excellent. The numerical scheme used to validate
our result was based upon a finite difference 3-stage Lobatto IIla formula which
is basically a collocation technique (Shampine, 1994).
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Figure 10.

Velocity profiles for the
Couette flow problem
with temperature
dependent viscosity

Figure 11.
Temperature profiles for
the Couette flow problem

with a temperature
dependent viscosity
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Figure 12.

Viscosity profiles for the
Couette flow problem
with temperature
dependent viscosity
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6.2.3 Case IIIl. Viscosity is a function of both, shear rate and temperature
1n = 1n(y,T). This is the most complex case where the effects of shear rate and
temperature affect the value of viscosity, i.e.

=Ky 1), (57)

As before, in this case we compare our results with those obtained with the
FDM mentioned above (Shampine, 1994).

Figures 13-15 show the comparison between the velocity, temperature and
viscosity profiles obtained with the two approaches. The numerical results
were obtained for two different values of the power law index, n of a
non-Newtonian fluid at a constant activation energy, E= 107 J/mol, and as can
be seen on these figures the MD-DRM results are very close to the test solution
with a numerical difference less than 1 percent.

6.3 Natural convection with viscous dissipation in a vertical channel

In this final example, natural convection in a parallel-plate vertical channel of a
Newtonian fluid is analyzed in the fully developed region by considering the
effect of viscous dissipation. Figure 16 shows a schematic of the problem. The
two boundaries are considered as isothermal and kept either at equal or at
different temperatures. Many analyses of convection flow in a parallel-plate
vertical channel are available in the literature. A comprehensive review of the
literature on this subject can be found in the work of Barletta (1998, 1999). Most
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Figure 13.

Velocity profiles for the
Couette flow problem
with viscous dissipation
and temperature
dependent viscosity
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Figure 14.
Temperature profiles for
the Couette flow problem
with viscous dissipation

and temperature
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Figure 15.

Viscosity profiles for the
Couette flow problem
with viscous dissipation
and temperature
dependent viscosity

Figure 16.

Schematic representation
of convective flow
between parallel plates
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of these studies present analytical and numerical solutions for the temperature
and velocity field for prescribed wall temperatures, in particular, the work by
Barletta (1998) is very special because he extended previous studies on laminar
convection by considering the viscous dissipation effect. This effect is expected
to be relevant for fluids with high values of the dynamic viscosity as well as for
high-velocity flows. Indeed, when viscous dissipation cannot be neglected, the
temperature field is dependent on the velocity field through a non-linear term in
the energy balance equation.
The governing equations for the problem are: the mass balance equation,

a .
i _ g (58)
0X;
the momentum balance equations
L T~ Ty =0 (59)
0X; naxjaxj o 07
and the energy equation,
02T
—ax]‘ax]‘ + ojg = 0 (60)

In all the above equations, the fluid is considered Newtonian with constant
thermophysical properties. The temperature effect in the momentum equation
has been taking in terms of the Boussinesq approximation, in this way by
taking the dissipation and buoyancy effects a two way coupling problem is
obtained.

For the problem depicted in Figure 16, the velocity and temperature profile
can be obtained analytically by a perturbation method explained by Barletta
(1998). This analytical solution was used to validate our numerical results
obtained by the MD-DRM method.

The numerical results including both effects, i.e. natural convection and
viscous dissipation, are given in terms of the following dimensionless
parameters:

72 " 7 Re
(61)
~ UoDp MG B nU(Z)
Re = — Pr = b Br_kAT’

where
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Figure 17.

Velocity variation along
the channel width in the
case of symmetric
heating, for arbitrary
values of =, and the case
of asymmetric heating
with 2 =0

& p2 T+ T
__ dr _ 1 2
Up = 180 Ty — (62)

with D= 2L. The perturbation solution found by Barletta was based upon the
parameter € = BrZ=.

For symmetric heating, ie. 77= T, and when viscous dissipation is
negligible, the temperature is uniform and no heat transfer occurs. In this case
with an arbitrary value of = the usual Hagen-Poiseuille velocity profile is
found. Figure 17 shows the obtained velocity profile with the MD-DRM
approach for this case. Similar results are obtained for asymmetric heating
with negligible buoyancy forces and relevant viscous dissipation. In this case,
the parameter E is equal to zero.

In Figure 18, we present the obtained velocity profile for the case of Br = 0,
L.e. the temperature is transferred by pure conduction from asymmetric heating
(no viscous dissipation), with values of Z = 0, 200 and 400. As expected for
large values of = a reversal flow near the cool wall is observed.

On the other hand, Figure 19 shows the variation across the channel of the
temperature for asymmetric heating in the case of 2 = 0, i.e. purely forced
convection occurs, with different values of Br = 0, 2 and 4. In this case, as in the
case of symmetric heating, Hagen-Poiseuille velocity profile is obtained
(Figure 17). Although the conduction region holds only for Br = 0, there is
aregion around the centre of the channel where the temperature is almost linear.

Finally, Figures 20 and 21, display the velocity and temperature profiles for
the case of Z = 500 and values of ¢ =0, 8 and 12, i.e. both buoyancy and

1.4 T T T T T T

— Barletta

0.8 o MD-DRM g

u [m/s]

0.6~ i

04 =

0.2+ “~

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y[m]



u [m/s]

TI°Cl

18 : : : : : : : Multi-domain

161 J
145 il
12 1
763
11 J
08f 4
06 4
04 (c)==400 =
- Barletta .
0.2 0 MD-DRM ) FlgUre 18.
Velocity variation along
ok the channel width in the
case of asymmetric
02 ‘ ; , ‘ . . ‘ \ . heating, for different
: 0.1 0.2 03 04 05 06 07 0.8 0.9 1 values of Z and Br = 0
y [m]
100 T T T T T
Br=4
90 =5 o 9°°eg .
© o
S 0]
0]
80l A 4
(6]
70t 4
Br=2
O O O O
60 5 © © @ -
o) ]
o) (]
50 4
= Br=0 Figure 19.
Temperature variation
s0f 4 along the channel width
in the case of asymmetric
heating, for different
2% L 1 1 1 1 Il 1 1 L

0 0.1 02 03 0.4 05 0.6 07 08 0.9 1 values of Brand 2 =0
y [m]




HFF
13,6

764

Figure 20.

Velocity variation along
the channel width in the
case of asymmetric
heating, for different
values of &£ and E = 500

Figure 21.
Temperature variation
along the channel width
in the case of asymmetric
heating, for different
values of € and E = 500
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convection effects are present. For small values of &, flow reversal close to the
cool wall is present, while for large value of &, no flow reversal appears. In this
last case, viscous dissipation tends to increase the buoyancy force at each
position and, as a consequence, it tends to contrast the flow reversal at the cool
wall. In all these cases, the numerical solution obtained by the proposed
MD-DRM is very close to the analytical solutions given by Barletta (1998).

7. Conclusion

In this work, a MD-DRM has been described and applied for the first time to
the solution of non-isothermal non-Newtonian flow problems with viscous
dissipation. The multi-domain technique is basically a domain partition
method in which dives the entire domain into smaller regions. In each
subregion or domain cell the integral representation formulae for the flow and
temperature field are applied, and between adjacent regions the corresponding
matching or continuity conditions are imposed. The domain integrals in each
subdomain are treated by the DRM approximation in terms of one of the most
efficient interpolation functions available in the mathematical literature.
Despite the relatively rough meshes used and most simple boundary elements
the results show convergence and high accuracy. For the number of
subdomains used in this work, the accuracy of the solution decreases as the
power index of the non-Newtonian fluid decreases due to the increase in the
non-linear behaviour of the problem. In such cases, the accuracy can be
improved by increasing the number of subdomains at the expense of additional
computational cost.

Despite MD-DRM there are internal elements and a mesh, it must not be
regarded as a domain method because all the domain integrals are converted
into equivalent boundary integrals in each cell or element. Therefore, the
proposed multi-domain method preserves the boundary only character of the
BEM.

The different test examples presented show the versatility and efficiency of
the proposed numerical scheme for the solution of non-linear flow problems. In
the present paper, we have also extended the capabilities of the MD-DRM to
non-isothermal non-Newtonian problems that had not been solved before using
the DRM.
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Appendix. Particular solutions used in DRM

Interpolation function f”(x) Particular solution 7},
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Table AIV.
Particular solution for

.k
the traction £

Interpolation function /™ (x)
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Particular solution £
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